
Comparative genomics

Ovidiu Paun

ovidiu.paun@univie.ac.at http://plantgenomics.univie.ac.at

Slides available at http://plantgenomics.univie.ac.at/MPGcourse

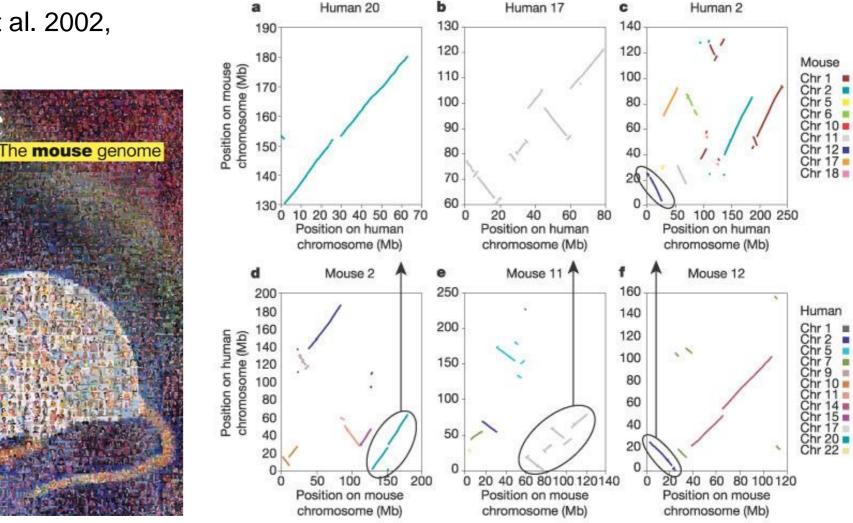
Why comparative genomics?

Evolution of genome features:

- Synteny
- Gene evolution
- Orthologs/paralogs

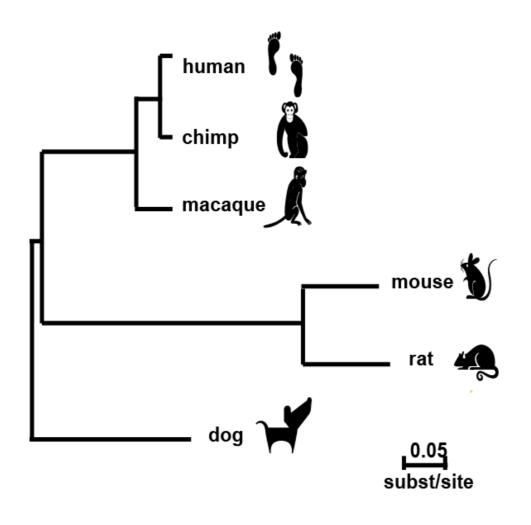
© www.genome.gov

Human genome (Feb 2001)



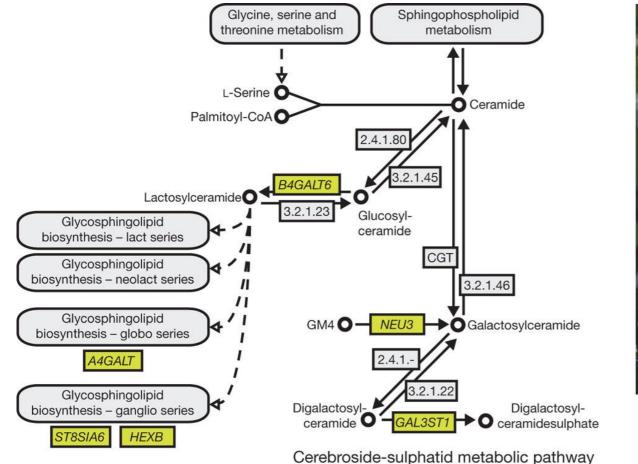
Ca 20,000 human protein-coding genes (ca 1.5% of the genome) Biological functions of many genes still unclear

Early Comparative Genomics


Chinwalla et al. 2002, *Nature* 420

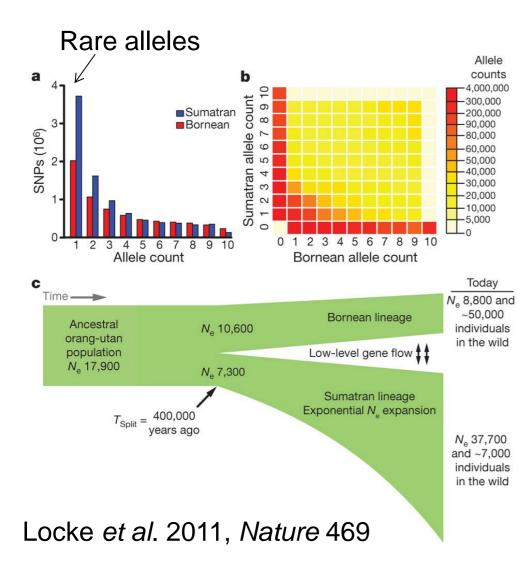
PING

Dot plots comparing mouse and human chromosomes (80MYA) Large scale synteny 85% (60-99%) identity of protein-coding regions


More mammalian genomes

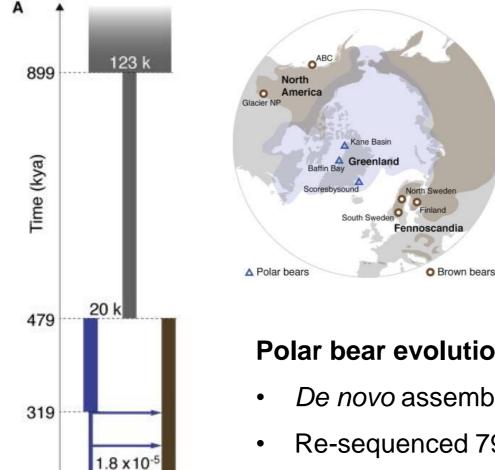
Rhesus Macaque Consortium *et al.* 2007, *Science* 316

Orang-utan genome(s)



Locke et al. 2011, Nature 469

Evidence for positive selection in primates: 'visual perception' and 'glycolipid metabolic processes', important for the nervous system


Orang-utan genome(s)

More recent split than thought Census and $N_{\rm e}$ show opposing tendencies

Polar bear genome

Polar bear evolution:

- *De novo* assembly of a PB reference genome (101x)
- Re-sequenced 79 Greenlandic PB + 10 BrB (3.5x 22x)
- Adaptation to a hyperlipid diet
- Significant signal for positive selection 9 of 16 genes associated to reorganisation of cardiovascular system

Liu et al. 2014 Cell 157

463 k

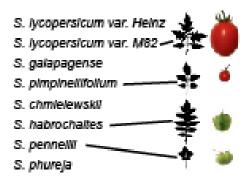
148 121

0

5 52

68

PNAS


Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato

Daniel Koenig^{a,b,1}, José M. Jiménez-Gómez^{a,c,1}, Seisuke Kimura^{a,d,2}, Daniel Fulop^{a,2}, Daniel H. Chitwood^a, Lauren R. Headland^a, Ravi Kumar^a, Michael F. Covington^a, Upendra Kumar Devisetty^a, An V. Tat^a, Takayuki Tohge^e, Anthony Bolger^f, Korbinian Schneeberger^{b,g}, Stephan Ossowski^{b,h}, Christa Lanz^b, Guangyan Xiongⁱ, Mallorie Taylor-Teeples^{a,j}, Siobhan M. Brady^{a,j}, Markus Paulyⁱ, Detlef Weigel^{b,3}, Björn Usadel^{f,k,I}, Alisdair R. Fernie^e, Jie Peng^m, Neelima R. Sinha^a, and Julin N. Maloof^{a,3}

www.pnas.org/cgi/doi/10.1073/pnas.1309606110

PNAS | Published online June 26, 2013 | E2655–E2662

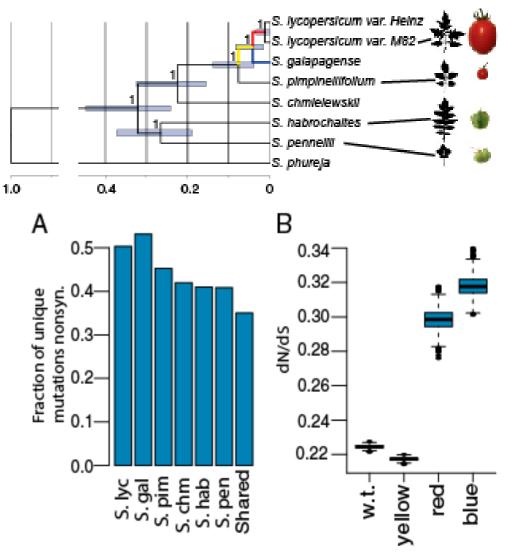
- · domesticated tomato
- . S.gal. island colonization and adaptation
- S.chm. high altitude, drought tolerant
- S.hab. high altitude, chilling tolerant
- S.pen. desert adapted

PNAS

Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato

Daniel Koenig^{a,b,1}, José M. Jiménez-Gómez^{a,c,1}, Seisuke Kimura^{a,d,2}, Daniel Fulop^{a,2}, Daniel H. Chitwood^a, Lauren R. Headland^a, Ravi Kumar^a, Michael F. Covington^a, Upendra Kumar Devisetty^a, An V. Tat^a, Takayuki Tohge^e, Anthony Bolger^f, Korbinian Schneeberger^{b,g}, Stephan Ossowski^{b,h}, Christa Lanz^b, Guangyan Xiongⁱ, Mallorie Taylor-Teeples^{a,j}, Siobhan M. Brady^{a,j}, Markus Paulyⁱ, Detlef Weigel^{b,3}, Björn Usadel^{f,k,I}, Alisdair R. Fernie^e, Jie Peng^m, Neelima R. Sinha^a, and Julin N. Maloof^{a,3}

www.pnas.org/cgi/doi/10.1073/pnas.1309606110

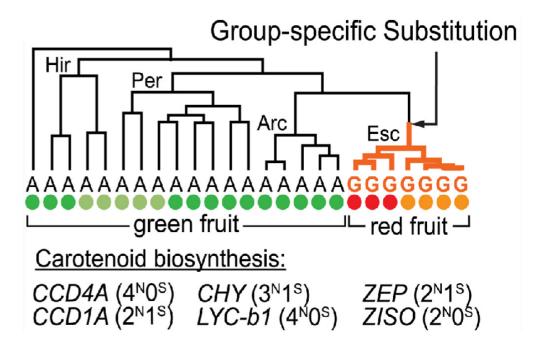

PNAS | Published online June 26, 2013 | E2655–E2662

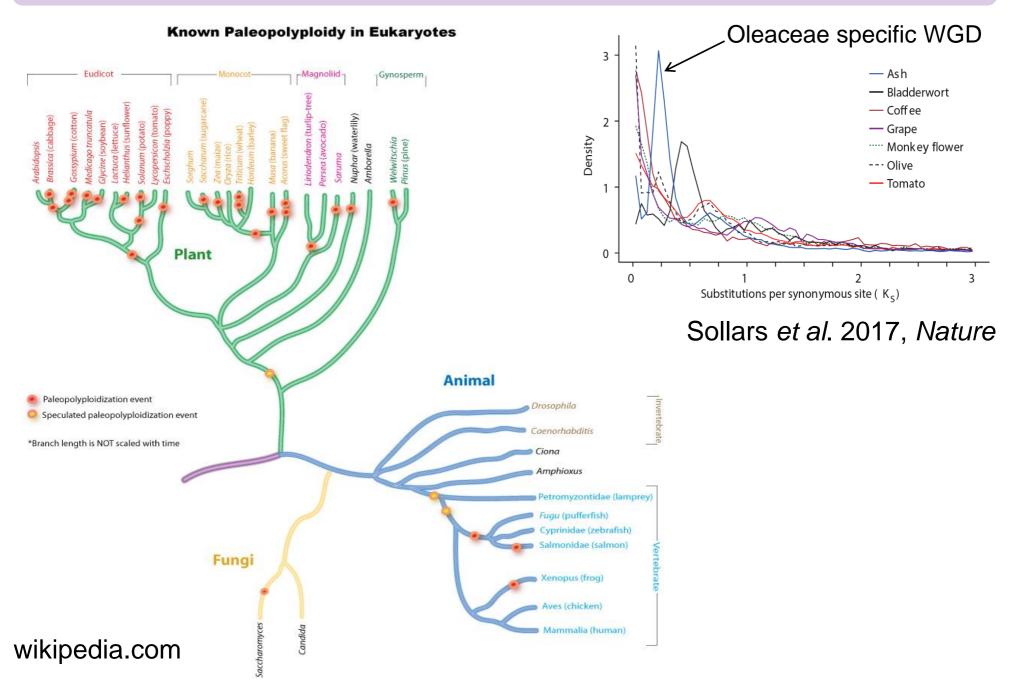
 Increased dN/dS after domestication in S.
 lyc., and during island colonization and adaptation in S. gal.

Due to relaxed purifying selection and/or fixation of mutations during genetic bottleneck due to drift.

• Relaxed purifying selection elevates dN/dS by random substitution across the genome, but positive selection at specific loci.

• 51 genes under positive selection - pathogen response. Some response to abiotic factors, such as soil chemistry.




Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation

James B. Pease ¹, David C. Haak ^{1,2}, Matthew W. Hahn ^{1,3}, Leonie C. Moyle ^{1*}

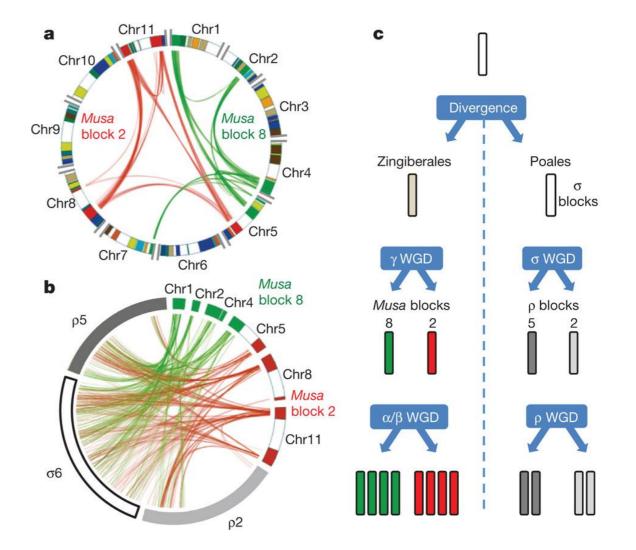
- Studied de novo evolution of lineage-specific traits
- 3.1% $d_N/d_s > 1$, p < 0.01 Esculentum; 4.7% in Arcanum and 4.0% in Hirsutum group
- Eg with functional consequences: 10 enzymes (33%) within the carotenoid biosynthesis are shared by red-fruited Esculentum
- Eg in *Ultraviolet Repair Defective 1* ortholog specific to Arcanum group, connected to adaptation to increased solar radiation at high altitude

Paleopolyploidy

2 0 1 2 | VO L 4 8 8 | N A T U R E

doi:10.1038/nature11241

The banana (*Musa acuminata*) genome and the evolution of monocotyledonous plants A D'Hont *et al.*


Signals of paleopolyploidy

a, Paralogs between chr. ancestral blocks 2 (red) and 8 (green).

FTTER

b, Orthologs of *Musa* ancestral blocks 2 and 8 with rice ancestral blocks ρ 2, ρ 5 and σ 6.

c, Representation of the deduced WGD event.

1000 genome projects

- > 1000 Human (www.1000genomes.org)
- > 1K Drosophila (www.dpgp.org/1K/
- > 1001 Arabidopsis (www.1001genomes.org/)
- > 10K Vertebrate Genome Porject (http://genome10k.soe.ucsc.edu/)

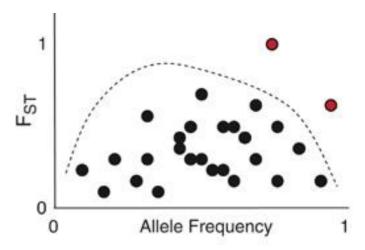
Two main reasons for genetic variation within a population or between species

Natural selection (survival of the fittest)

Mutation and drift (survival of the luckiest)

Gillespie, J.H. 1998. *Population genetics: a concise guide*. John Hopkins Univ. Press, Baltimore.

Hartl, D.L.& A.G. Clark. 1997. *Principles of population genetics*. Sinauer Associates, Sunderland, Massachusetts.


Mining polymorphism data

Disentangle the effect of evolutionary forces

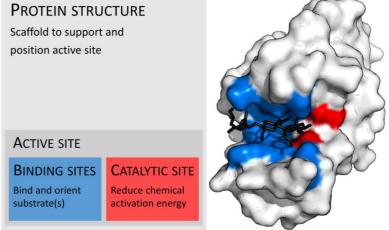
- Mutational process
- Drift
- Population dynamics and structure
- Selection (which kind?)

Several possible approaches

Candidate genes or loci Blind approaches or genome scans Unusual levels of polymorphism Unusual patterns of polymorphism Phylogenetic approach

Stinchcombe & Hoekstra 2008, *Heredity*

Positive and negative selection

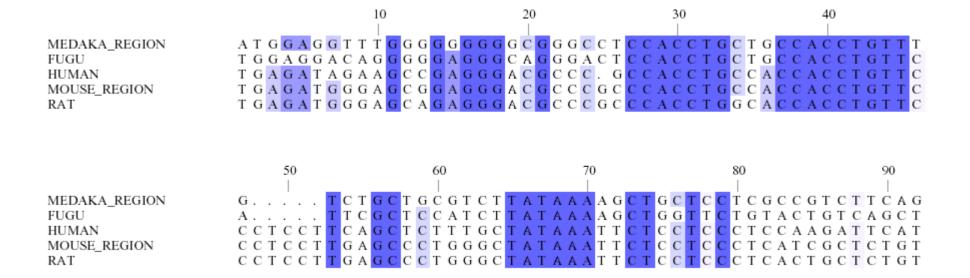

Genotype	AA	Aa	aa
Frequency	p^2	2p(1-p)	(1-p)²
Fitness	1	1+s	1+2s

s is the selection coefficient

- s ~ 0: neutral evolution
- s < 0: negative (purifying) selection
- s > 0: positive selection (adaptive evolution)

The rationale

- Functionally important regions tend to be more conserved than non-functional regions
- > Examples:



https://wikipedia.org

- Exons are often more conserved than non-coding parts of the genome (genes)
- The binding site composition is well conserved even between remote species
- Positive selection is more interesting than negative selection - evolutionary innovations and species divergence

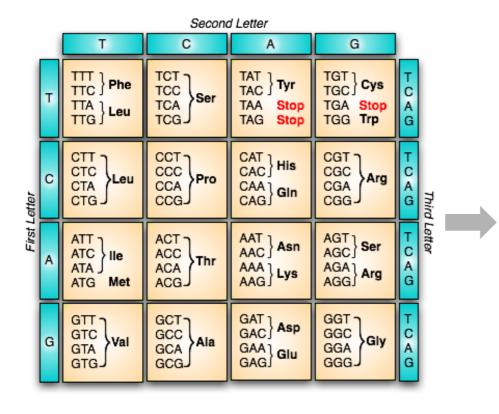
The rationale

Conserved regions are a good starting point to look for functionally important elements in the genome.

Neutral theory of molecular evolution (Kimura 1968)

the number of new mutations arising in a diploid population

the fixation probability of a new mutation by drift


$$\frac{1}{2N}$$

the substitution (fixation) rate

$$k = 2N\mu \times 1/2N$$

neutral theory:
$$k = \mu$$

The genetic code determines the impact of a mutation

Kimura (1968)

- **d**_s: number of synonymous substitutions per synonymous site (K_s)
- **d_N:** number of nonsynonymous substitutions per nonsynonymous site (K_A)

w: the ratio d_N/d_S - measures selection at the protein level

An index of selection

rate ratio	mode	example
d _N /d _S < 1	purifying (negative) selection	house keeping genes
d _N /d _S = 1	neutral evolution	pseudogenes
d _N /d _S > 1	diversifying (positive) selection	genes of the immune system

Estimation of dN and dS between 2 sequences:

- A. Counting methods
- B. Codon substitution models
- C. ML method

Counting method

Why use d_N and d_S ? Why not use raw counts?

example:

gene of 300 codons from a pair of species5 synonymous differences5 nonsynonymous differences

5/5 = 1

Why **don't** we conclude that rates are equal (i.e., **neutral evolution**)?

Why do we use d_N and d_S ?

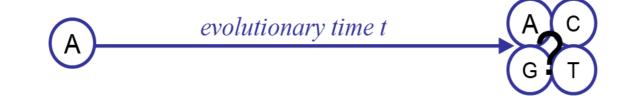
Relative proportion of different types of mutations in hypothetical protein coding sequence.

	Expected number of changes					
Туре	All 3 Positions	1 st positions	2 nd positions	3 rd positions		
Total mutations	300 (100%)	100	100	100		
Synonymous	75 (25%)	4	0	69		
Nonsyonymous	213 (71%)	91	96	27		
nonsense	12 (4%)	5	4	4		

Modified from Li and Graur (1991). Note that we assume a hypothetical model whee all codons are used equally and that all types of point mutations are equally likely.

Why do we use d_N and d_S ?

example, using d_N and d_s: gene of 300 codons from a pair of species 5 synonymous differences 5 nonsynonymous differences

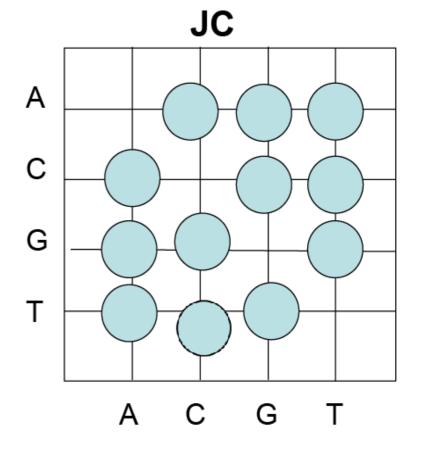

Synonymous sites = 25.5% S = 300 x 3 x 25.5% = 229.5

Nonsynonymous sites = 74.5% N = 300 x 3 x 74.5% = 670.5

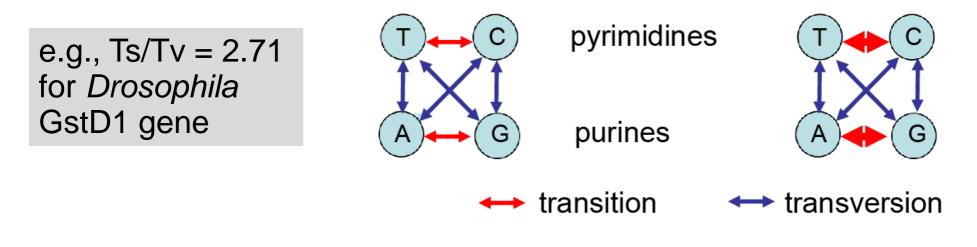
 $d_{\rm S} = 5/229.5 = 0.0218$ $d_{\rm N} = 5/670.5 = 0.0075$

 $d_N/d_S(\omega) = 0.34$ -> purifying selection!!!

- Specify rates of replacement of each nucleotide
- These rates define the probabilities of all events that could happen at each instant, and the future depends on the present, but not on the past
- > Hence the rates define the probabilities of all events over all times

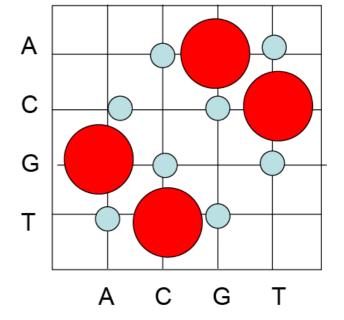


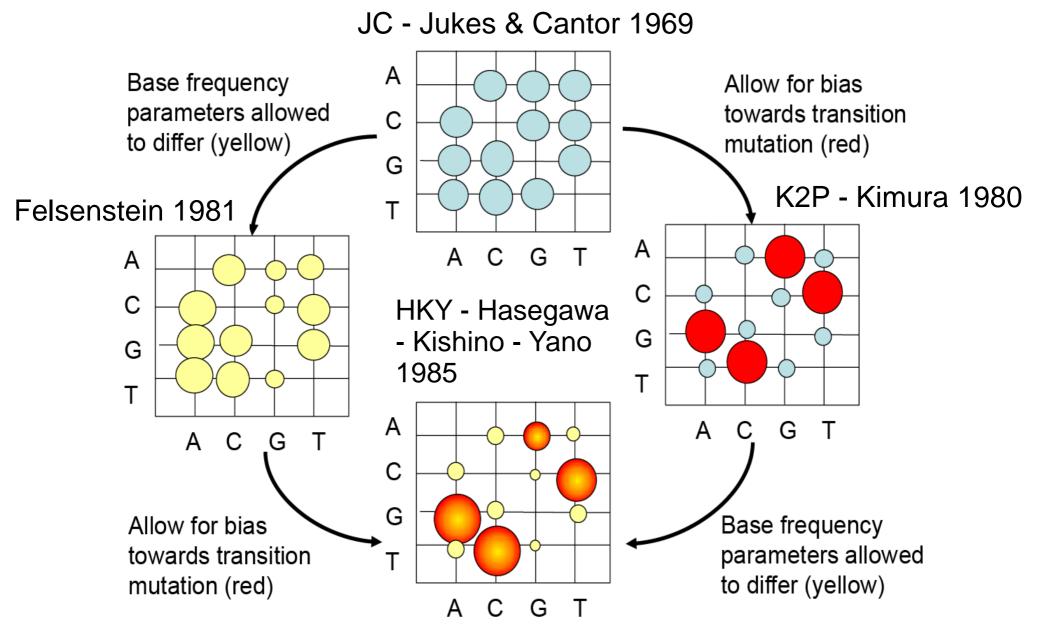
Can we model sequence evolution?


- Assuming each nucleotide evolves independent of other sites' evolution and of its past history (Jukes-Cantor 1969; Neyman 1971)
- => Model substitutions as Markov model

The Jukes-Cantor (JC) model

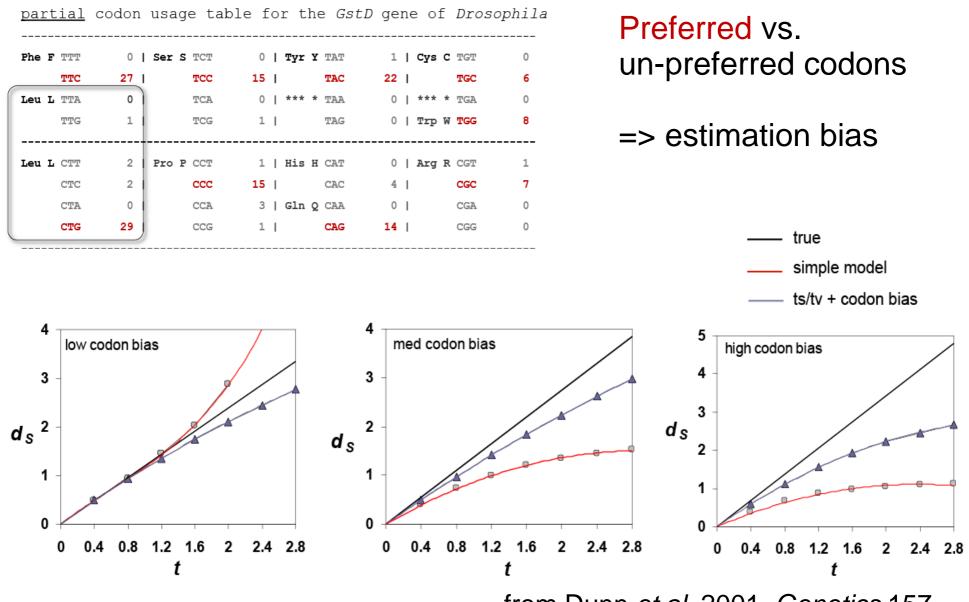
- All substitutions are equally likely.
- All nucleotides occur at the same frequency (25%).
- \checkmark One parameter: the rate of substitution (α).


Real data have biases

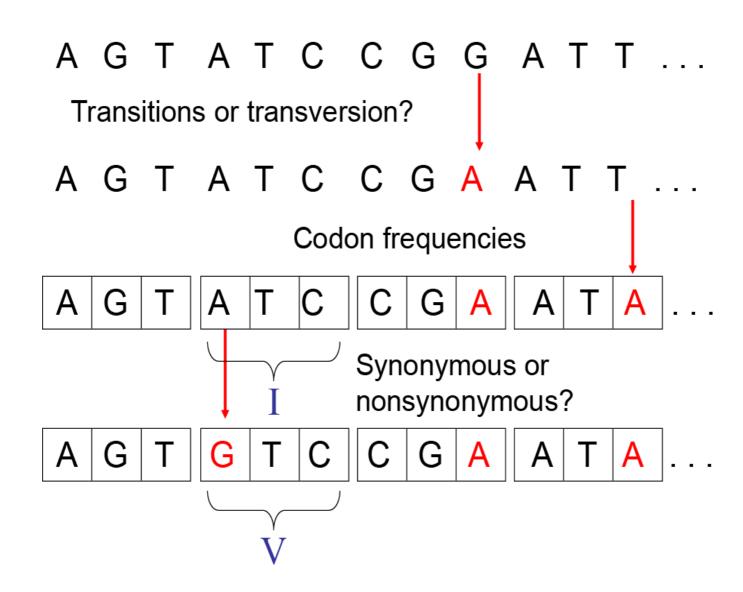

K2P

Kimura two parameter (K2P) model

- Transitions and transversions happen at different rates.
- All nucleotides occur at the same frequency.
- Two parameters: transition rate (α) and transversion rate (β).



Nested models


Whelan et al. 2001, TREE 17

Real data have biases

from Dunn et al. 2001, Genetics 157

Codon sequence evolution

Evolutionary time

Codon sequence evolution

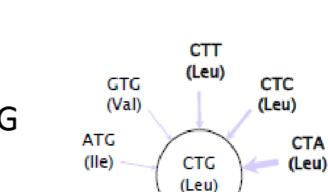
dS and dN must be corrected for both the structure of genetic code and the underlying mutational process of the DNA -this can differ among lineages and genes

Correcting dS and dN for underlying mutational process of the DNA makes them sensitive to assumptions about the process of evolution

-evolution occurs at the population level (micro-evolution)

Markov chain model of codon substitution

Factors to consider:


- Transition/transversion rate ratio: κ
- Biased codon usage: πj for codon j
- •Nonsynonymous/synonymous rate ratio: $\omega = dN/dS$

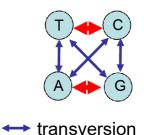
Synonymous

CTC (Leu) \rightarrow CTG (Leu) π CTG TTG (Leu) \rightarrow CTG (Leu) $\kappa\pi$ CTG

Nonsynonymous

GTG (Val) \rightarrow **CTG** (Leu) $\omega \pi CTG$ CCG (Pro) \rightarrow CTG (Leu) $\kappa\omega\pi$ CTG

CGG


(Ara)

CAG

(GIn)

TTG

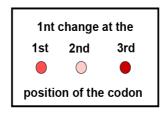
(Leu)

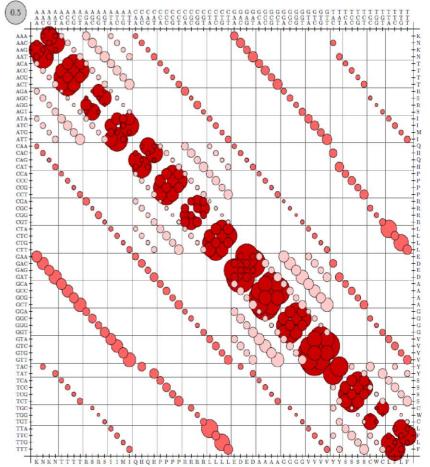
CTA

CCG

(Pro)

The (basic) codon model M0


- 0 if $i \rightarrow j$ is > 1 nucleotide substitution or j is a stop codon
- π_j if $i \rightarrow j$ synonymous transversion
- $\int \pi_j K$ if $i \rightarrow j$ synonymous transition
 - $\pi_j \omega$ if $i \rightarrow j$ nonsynonymous transversion
 - $\pi_j K \omega$ if $i \rightarrow j$ nonsynonymous transition


where

 $Q_{ij} =$

- K : transition/transversion rate ratio
- π_j : equilibrium frequency of codon *j*
- $\dot{\omega}$: nonsynonymous/synonymous rate ratio

Parameter estimation via ML

(Goldman & Yang 1994 *Mol Biol Evol* 11 Muse & Gaut 1994 *Mol Biol Evol* 11)

The instantaneous rate matrix, Q is very big 61x61


Just a few parameters are needed to cover the 3721 transitions between codons!

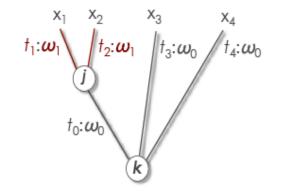
Intentional simplification: all amino acid substitutions have the same $\boldsymbol{\omega}$

	to codon below:							
From codon below:	ΠΤ (Phe)	TTC (Phe)	ΠΑ (Leu)	ΠG (Leu)	СП (Leu)	CTC (Leu)		GGG (Gly)
TTT (Phe)		$\kappa \pi_{\rm TTC}$	$\omega \pi_{\mathrm{TTA}}$	$\omega \pi_{\mathrm{TTG}}$	$\omega \kappa \pi_{\rm TTT}$	0		0
TTC (Phe)	$\kappa \pi_{\mathrm{TTT}}$		$\omega \pi_{\mathrm{TTA}}$	$\omega \pi_{\mathrm{TTG}}$	0	$\omega\kappa\pi_{\rm CTC}$		0
TTA (Leu)	$\omega \pi_{\rm TTT}$	$\omega \pi_{\mathrm{TTC}}$			0	0		0
TTG (Leu)	$\omega \pi_{\rm TTT}$	$\omega \pi_{\mathrm{TTC}}$	$\kappa \pi_{\mathrm{TTA}}$		0	0		0
CΠ (Leu)	$\omega\kappa\pi_{\mathrm{TTT}}$	0	0	0		$\kappa \pi_{\rm CTC}$		0
CTC (Leu)	0	$\omega\kappa\pi_{\mathrm{TTC}}$	0	0	$\kappa \pi_{\mathrm{TTT}}$			0
¥	Ļ	▼	•	•	¥	¥	**********	
GGG (Gly)	0	0	0	0	0	0	0	

* This is equivalent to the codon model of Goldman and Yang (1994). Parameter $\boldsymbol{\omega}$ is the ratio d_N/d_S , $\boldsymbol{\kappa}$ is the transition/transversion rate ratio, and $\boldsymbol{\pi}_i$ is the equilibrium frequency of the target codon (i).

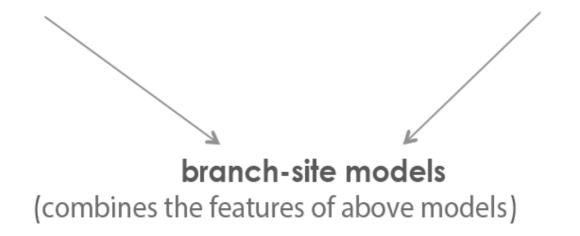
Probability of substitution between codons over time, P(t)

Numbers of substitutions are calculated from Qij and t


Number of sites (S and N, i.e., mutational opportunities) are calculated from Qij by fixing ω =1

Potential problems:

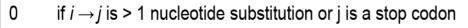
- wrong sequence divergence, often too high (unreliable), sometimes too low (large sampling error)


-data quality control, alignment

Models for variation among branches and sites

$\omega_1 \omega_0 \qquad \omega_1 \qquad \omega_0$	ω_1
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GG	C AAG GTT
G.C TT	
CT A A.TA	A A.C
	G A
CG GATT CGA AT	TG

branch models (ω varies among branches) site models (*w* varies among sites)



Model based inference

3 analytical tasks:

- 1) parameter estimation (e.g., ω)
- 2) hypothesis testing
- 3) make predictions (e.g., sites having $\omega > 1$)

Parameter estimation

 π_i if $i \rightarrow j$ synonymous transversion

- $\pi_i K$ if $i \rightarrow j$ synonymous transition
- $\pi_i \omega$ if $i \rightarrow j$ nonsynonymous transversion
- $\pi_i K \omega$ if $i \rightarrow j$ nonsynonymous transition

where

- K : transition/transversion rate ratio
- π_i : equilibrium frequency of codon *j*
- ω : nonsynonymous/synonymous rate ratio

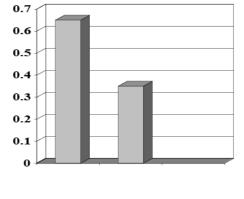
t, K, ω - unknown constants estimated by ML π - empirical (e.g., F3x4 codon frequency model)

Use a numerical hill-climbing algorithm to maximize the likelihood function

$$Q_{ij} =$$

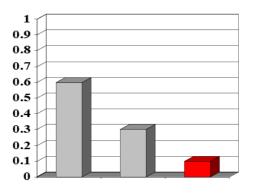
Likelihood ratio test for positive selection

The simpler (null) model H0 has q parameters with log likelihood L0: variable selective pressure but no positive selection (M1)


The more general (alternative) model H1 has p parameters with log likelihood L1: variable selective pressure with positive selection (M2)

Compare twice the log likelihood difference

 $2\Delta L = 2(L1 - L0)$


with a χ^2 distribution with d.f. = p - q to test whether the simpler model is rejected

 $\hat{\omega} = 0.5$ ($\omega = 1$)

Model 2a

 $\hat{\omega} = 0.5$ ($\omega = 1$) $\hat{\omega} = 3.25$

Weaknesses of codon-based methods

- Do not work for noncoding DNA
- Model assumptions may be unrealistic (but some assumptions matter more than others).
- The method detects positive selection only if it generates excessive nonsynonymous substitutions. It may lack power in detecting one-off directional selection or when the sequences are highly similar or highly divergent. It has little power with population data.
- Sensitive to sequence and alignment errors (Fletcher & Yang 2010 *Mol Biol Evol* 27; Privman et al. 2011 *Mol Biol Evol* 29; Jordan & Goldman 2012 *Mol Biol Evol* 29)

PAML (Phylogenetic Analysis by ML)

A program package by Ziheng Yang

Features include:

- estimating synonymous and nonsynonymous rates
- testing hypotheses concerning d_N/d_S rate ratios
- various amino acid-based likelihood analysis
- ancestral sequence reconstruction (DNA, codon, or AAs)
- various clock models
- simulating nucleotide, codon, or AA sequence data sets
- and more

PAML (Phylogenetic Analysis by ML)

Download PAML from:

http://abacus.gene.ucl.ac.uk/software/paml.html

For windows, Macs, and Unix/Linux

baseml for bases

basemIg continuous-gamma for bases

codeml aaml (for amino acids) & codonml (for codons)

evolver simulation, tree distances

yn00 dN and dS by YN00

chi2 chi square table

pamp parsimony (Yang and Kumar 1996)

mcmctree Bayes MCMC tree (Yang & Rannala 1997). Slow

Orchid diversity

Phalaenopsis ©Sagaflor

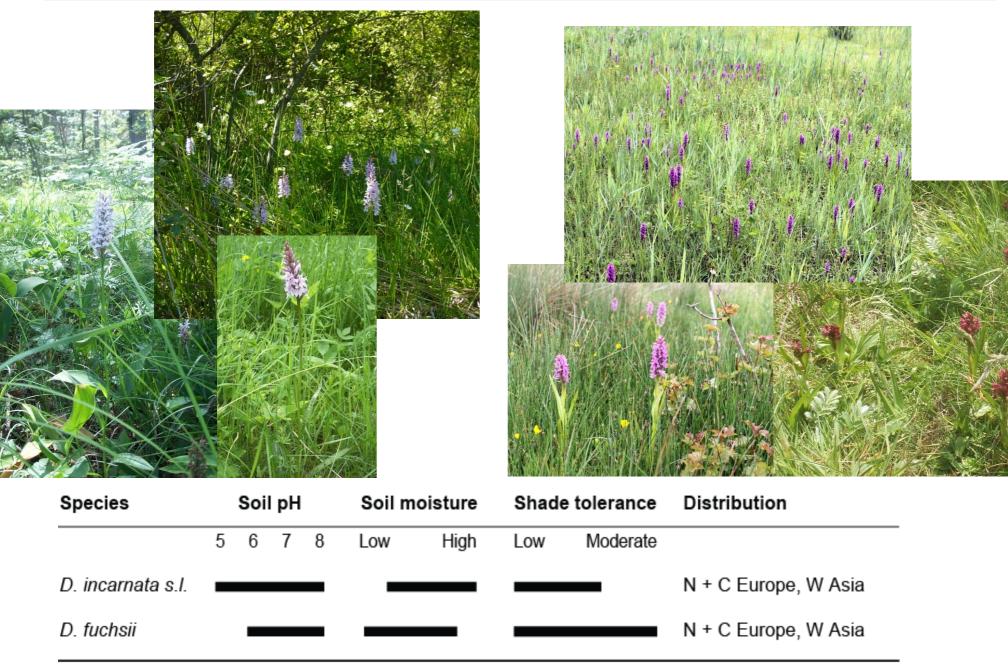
Orchis italica ©T. Hughes

1

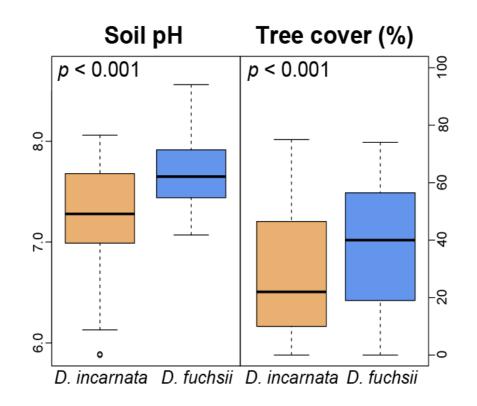
Caladenia ©N. Hoffman

Ophrys apifera ©H. Bernd

Vanda ©D. Kulaga


Cattleya ©S. Wilson

D. fuchsii and D. incarnata


D. fuchsii and D. incarnata

Based on field observations of RB in Britain, MH in Scandinavia and OP in the Alps and Pyrenees.

Paun et al. 2011 BMC Evol Biol

Dactylorhiza: microhabitat divergence

Francisco Balao

Landsat Tree Cover (~30 m resolution) at 691 localities Soil pH measured at 14 European localities

Parapatric species, with similar macroenvironmental preference, but distinct microhabitat optima

Balao et al. 2017 Molec Ecol

Coding sequence variation

- Mapping to Orchis italica transcriptome (De Paolo et al. 2014)
- Calling/filtering SNPs with GATK
- 23,185 indels and 727,350 SNPs

0.3

0.2

0.1

0

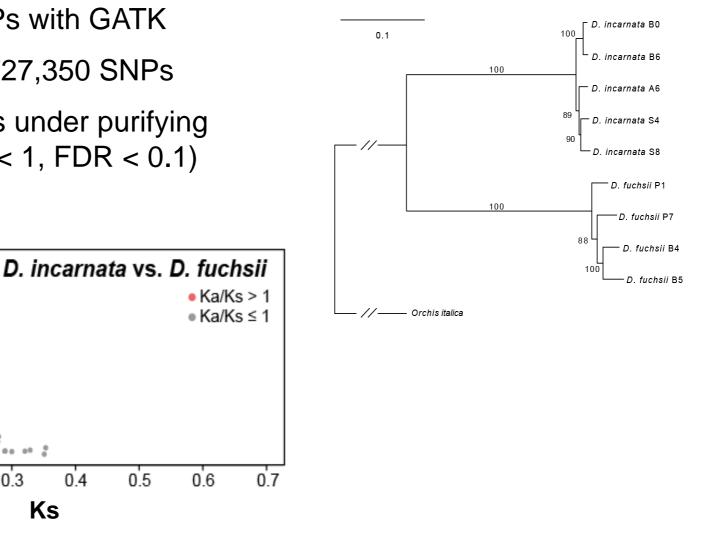
0.1

Кa

 61 - 67% transcripts under purifying selection (i.e., Ka/Ks < 1, FDR < 0.1)

Red Balling

0.2

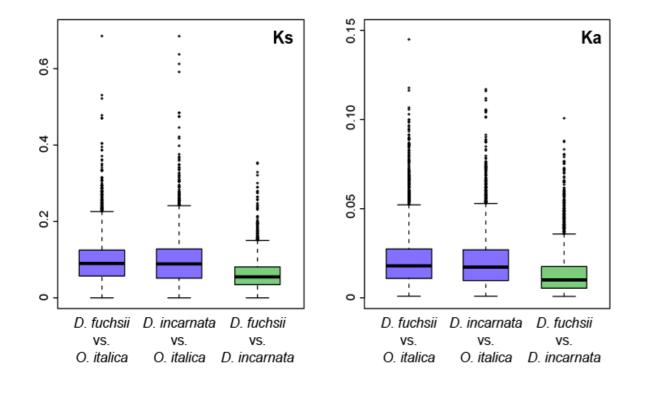

0.3

Ks

0'4

0.5

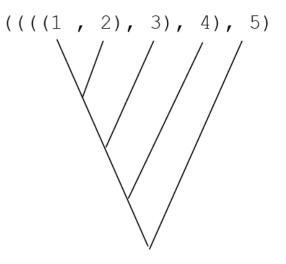
0.6



Balao et al. 2017 Molec Ecol

- *Df* and *Di* diverged 10.4 MYA (Ks = 0.06)
- Ka:Ks 1:5 in line with

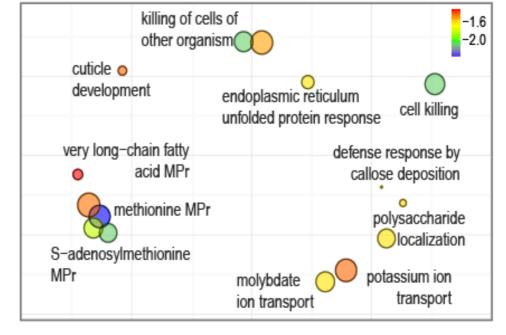
A. thaliana and A. lyrata (5-10 MYA; Yang & Gaut 2011)


Gossypium arboreum and G. raimondii (7-11 MYA; Senchina et al. 2003).

Balao et al. 2017 Molec Ecol

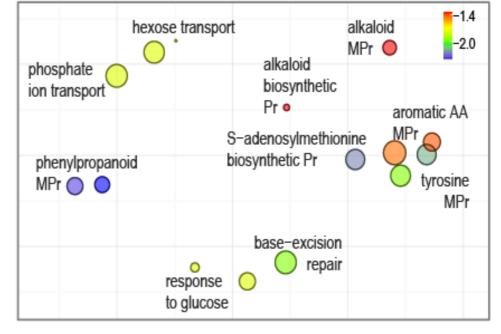
Running PAML

- 1. Sequence data file plain text in PHYLIP format
- 2. Tree file as parenthetical notation
- 3. Control file (*.ctl)


Running PAML: the *.ctl file

```
seqfile = seqfile.txt * sequence data filename
 treefile = tree.txt  * tree structure file name
  outfile = results.txt  * main result file name
   noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
 verbose = 1  * 1:detailed output
  runmode = 0
                  * 0:user defined tree
  seqtype = 1 * 1:codons
CodonFreg = 2
                  * 0:equal, 1:F1X4, 2:F3X4, 3:F61
   model = 0
                  * 0:one omega ratio for all branches
 NSsites = 0
                  * 0:one omega ratio (M0 in Tables 2 and 4)
                  * 1:neutral (M1 in Tables 2 and 4)
                  * 2:selection (M2 in Tables 2 and 4)
                  * 3:discrete (M3 in Tables 2 and 4)
                  * 7:beta (M7 in Tables 2 and 4)
                  * 8:beta&w; (M8 in Tables 2 and 4)
   icode = 0
                  * 0:universal code
fix kappa = 0
                  * 1:kappa fixed, 0:kappa to be estimated
   kappa = 2
                  * initial or fixed kappa
fix omega = 0
                 * 1:omega fixed, 0:omega to be estimated
   omega = 5
                  * initial omega
```

Excercises


- 1. ML estimation of the pairwise $d_N/d_S(\omega)$ ratio "by hand". Use codeml to evaluate the likelihood for a variety of fixed pairwise ω values
- 2. Check your findings from exercise 1 by running codeml's hill-climbining algorithm (still pairwise)
- 3. ML estimating of the branch-specific ω for *D. fuchsii*, for *D. incarnata* and for the branch of their most recent common recent ancestor
- 4. If time allows blastx the sequence, and use Ensembl to find which of the paralogues of this gene is due to the most recent duplication event (try using Oryza).

- $\infty >> 1$: 18 transcripts in *Df* and 14 transcripts in *Di*
- genes related to responses to biotic responses, including physical and chemical adaptations:
 - DEFENSIN J1-2 inhibits growth of pathogenic fungi
 HAI1 PHOSPHATASE defence response by deposition of callose
 TETRAKITIDE α-PYRONE REDUCTASE 2 flavonoid biosynthesis
 3-KETOACYL-SYNTHASE 10 role in developing cuticular wax

D. fuchsii

- $\infty >> 1$: 18 transcripts in *Df* and 14 transcripts in *Di*
- genes related to responses to biotic responses, including physical and chemical adaptations:
 - *Di*: POLYPHENOL OXIDASE producing melanins protecting wounds PRIMARY AMINE OXIDASE wound-healing and cell-wall reinforcement YELLOW-LEAF SPECIFIC GENE 9 - viral defence response protein LACCASE - role in formation of lignin and alkaloid biosynthesis

D. incarnata

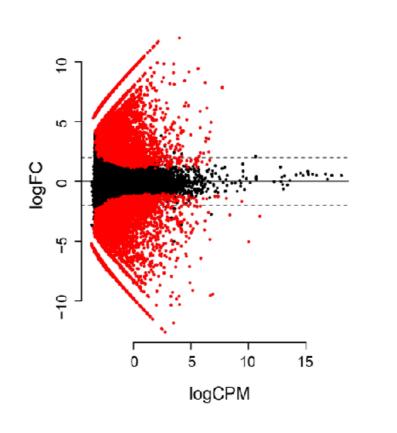
Di:

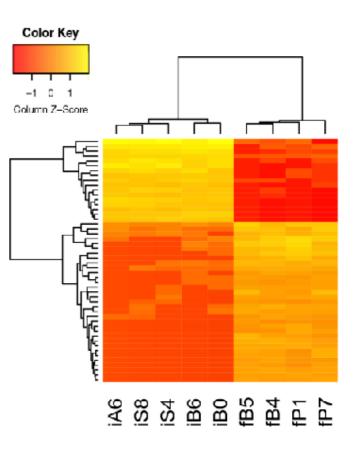
SUGAR CARRIER C - hexose transmembrane transport likely linked to hypoxia PYRUVATE DECARBOXYLASE 1 - tolerance to root submergence

Df and *Di:* lon transporters

D. incarnata		
phosphate	hexose transport alkaloid MPr -1.4 alkaloid	
ion transport	biosynthetic Pr • aromatic AA S-adenosylmethionine	
phenylpropano MPr 🔵 🔵		
	base-excision repair	
	to glucose	

Highly divergent expression


- extensive DE (>30% of genes)
- DE related to abiotic adaptation or acclimation to common garden



Thomas Wolfe

Francisco Balao

