
1

Script for SNP calling and evaluation
January 2025

Ovidiu Paun, ovidiu.paun@univie.ac.at

To get an introduction into SNP calling we will work with data from the plant genus Tillandsia,
from the pineapple family (Bromeliaceae). While diving into SNP calling and evaluation, our
biological aim is to reconstruct phylogenetic relationships between some accessions based
on genomic sequences, but we will use as a reference only 1 chromosome, namely the
smallest chromosome of T. fasciculata.

NB: For each of these aims several analytical steps are required. For one particular aim there
may be several procedures (pipelines) possible.

PART 0: SETTING UP YOUR WORK SPACE
Open a Terminal with shortcut Ctrl+Alt+T or click the terminal icon. Connect to
molsysbio.cica.es with SSH. First create a sudirectory called SNPcall into your home directory
and copy the data (the home folder is symbolized by ~)1:

$cd ~/student_name/ (replace student_name with your name)
$mkdir SNPcall

$cd SNPcall

$cp -r ../ovidiu/2copy/* ./

Let’s check what is in our folder:
$ls -lth

PART I: MAP READS TO A REFERENCE (ONLY EXEMPLIFIED, NOT DONE IN CLASS)
The first step after read quality assessment and filtering is to map the data to a reference
genome. We will not do this step together, but just for completeness, here is an example how
mapping can be done with BWA2. This is a software package for mapping low-divergent
sequences against a large reference genome.
First the reference needs to be prepared for alignment by generating a genome index from
fasta files.

$bwa index -a is ./reference.fasta

Then the reads are mapped to the reference, outputting the results as SAM. Here fasta or
fastq read files can be used, but they should be quality trimmed/filtered. BWA-MEM is the
latest mapping algorithm and it is generally recommended for high-quality queries as it is faster
and more accurate.

$bwa mem -t 6 ./reference.fasta ./input.trimmed_P1.fq
./input.trimmed_P2.fq > ./output_mapped.sam

1 The symbol $ is used to show the cursor, i.e., you should not type it in the terminal.
2 https://doi.org/10.1093/bioinformatics/btp324

mailto:ovidiu.paun@univie.ac.at
https://doi.org/10.1093/bioinformatics/btp324

2

It is better for further processing to sort the file by coordinates of the reference and transform
it to BAM (smaller file size) with PICARD3:

$java -jar picard.jar SortSam I=./output_mapped.sam
O=./output_mapped.bam SO=coordinate

PART II: VARIANT DISCOVERY WITH GATK4
We will exemplify SNP calling using bam files of reads already mapped to the smallest
chromosome from the reference genome of Tillandsia fasciculata. The mapping has been
already done with BWA MEM similarly as above.

The Genome Analysis Toolkit (GATK) is a standard for variant calling and filtering. This starts
from mapped files (generally BAM) and produce a VCF file with SNPs and indels, which further
needs to be filtered.
We will do some of the steps with a single file, and then combine with other files that are
provided already prepared. Before using GATK to call variants we have to prepare a
“dictionary” and an “index” from the reference with other tools, such as PICARD3 and
SAMTOOLS5. PICARD is a JAVA based program, and such programs are called in general
like “java -jar program.jar”. In addition we will use the option -Xmx6g to limit the RAM usage
to 6Gb during this analysis. PICARD has different submodules, like MarkDuplicates or
AddOrReplaceReadGroups.

$cd ~/student_name/SNPcall/data/

$java -Xmx6g -jar ../programs/picard.jar CreateSequenceDictionary
R=./Tfas_chr25.fasta O=Tfas_chr25.dict

$samtools faidx Tfas_chr25.fasta

We will then add read groups (i.e., internal labels in the header of the BAM file):
$nice -n 19 java -Xmx6G -jar ../programs/picard.jar
AddOrReplaceReadGroups I=./Tionantha_B84_map.bam
O=./Tionantha_B84.gr.bam RGID=Tionantha_B84 RGLB=Tionantha_B84
RGPL=illumina RGPU=Tionantha_B84 RGSM=Tionantha_B84

To see the effect of AddOrReplaceReadGroups, check the end of the header of the BAM file
before and after the analyses:

$samtools view -H ./Tionantha_B84_map.bam | tail

$samtools view -H ./Tionantha_B84.gr.bam | tail

The processed file has in the header a ReadGroup field “@RG” with the subfields ID, LB,
PL, SM and PU. Next we will create indexes for all .gr.bam files with a “for loop”:

$for file in *.gr.bam; do echo $file; samtools index $file; done

To speed up we will skip some (optional) steps like marking PCR duplicates (not really needed
as PCR-free library prep) and realignment around indels (in general only a marginal effect on
output). The next optional step would be base recalibration, which can make use of a
previously known set of variants to validate base calibration. As we work with a non-model,
no previous acurate information/database is available with known variants, so we will skip this
step as well. We are hence ready to call variants. We will use the module UnifiedGenotyper

3 https://broadinstitute.github.io/picard/
4 https://doi.org/10.1101/gr.107524.110
5 https://doi.org/10.1093/gigascience/giab008

https://broadinstitute.github.io/picard/
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1093/gigascience/giab008

3

from GATK (not the latest, but one of the fastest so appropriate for such short course). This
step takes ca 30 min:

$nice -n 19 java -Xmx6G -jar ../programs/GenomeAnalysisTK.jar -T
UnifiedGenotyper -R ./Tfas_chr25.fasta -I Talbida_B26.gr.bam -I
Tfasciculata_B25.gr.bam -I Tionantha_B84.gr.bam -I
Tionantha_B43.gr.bam -I Tleoboldiana_24.gr.bam -I Tmima_20.gr.bam
-o ./1chr.vcf

Day2 SNPcalling
If needed: Copy the raw vcf file from me, and continue the rest of the practical part:

$cd ~/student_name/SNPcall (replace student_name with your name)
$cp ../ovidiu/2copy/1vcf* ./

Having a raw file of variants we can attempt to filter these variants with hard filters that are
recommended by GATK: Fisher Strand values (FS > 60.0), by the Quality by Depth Values
(QD < 2.0) and by the Mapping Quality (MQ < 40).

$java -Xmx6G -jar ../programs/GenomeAnalysisTK.jar -T
VariantFiltration -R ./Tfas_chr25.fasta -V 1chr.vcf --
filterExpression "QD < 2.0 || FS > 60.0 || MQ < 40.0" --filterName
"default" -o 1chrf.vcf

A VCF file is a text file (tabular) format for storing genotype data. It will include data for SNPs,
but potentially also indels.
Let’s open the beginning of the VCF file produced and inspect it:

$head -40 1chrf.vcf

Every vcf file has 3 parts: i) meta-information lines (beginning with “##”); ii) a header line
(beginning with “#CHROM”); and iii) data lines containing marker and genotype data (one
variant per line). A data line is called a VCF record. Each VCF record will have the same
number of tab-separated fields as the header line. The symbol “.” is used to indicate missing
data.
Each meta-information line must have the form ##KEY=VALUE and cannot contain white-
space. The first meta-information line must specify the VCF version number (version 4.2 in
the example). Additional meta-information lines are optional, but are often included to describe
terms used in the FILTER, INFO, and FORMAT fields.
The first nine columns of the header line and data lines describe the data:
CHROM the chromosome.
POS the genome coordinate of the first base in the variant. Within a chromosome, VCF
records are sorted in order of increasing position.
ID a semicolon-separated list of marker identifiers.
REF the reference allele expressed as a sequence of one or more A/C/G/T nucleotides (e.g.
"A" or "AAC")
ALT the alternate allele expressed as a sequence of one or more A/C/G/T nucleotides (e.g.
"A" or "AAC"). If there is more than one alternate alleles, the field should be a comma-
separated list of alternate alleles.
QUAL probability that the ALT allele is incorrectly specified, expressed on the phred scale (-
10log10(probability)).

4

FILTER Either "PASS" or a semicolon-separated list of failed quality control filters.
INFO additional information (no white space, tabs, or semi-colons permitted).
FORMAT colon-separated list of data subfields reported for each sample. The format
fields in the Example are explained below.
The sample data is stored after the ninth column. The remaining columns contain the sample
identifier and the colon-separated data subfields for each individual. The most common format
subfield is GT (genotype) data. In the sample data, genotype alleles are numeric: the REF
allele is 0, the first ALT allele is 1, and so on. The second record contains a GP (genotype
probability) format subfield, and the third record contains PL (phred-scaled genotype
likelihood) format subfield.
We could count quickly how many variants are in the file:

$cat 1chrf.vcf | cut -f 7 | sort | uniq -c

We should try to evaluate our results, to get a better grasp of the data. We can use for example
vcftools6 and bcftools7 to produce some basic statistics. First we will select with BCFTOOLS
just SNPs that passed the filter in VariantFiltration/GATK.

$bcftools view -f PASS 1chrf.vcf > 1chrf_pass.vcf

We can next calculate with vcftools the missingness on a per-individual basis:
$vcftools --vcf 1chrf_pass.vcf --missing-indv --out 1chrf_pass

The output will carry a suffix .imiss. We can print the result on the screen vertically aligned:
$column -t -s $’\t’ 1chrf_pass.imiss

Q1: Discuss the following question:
What could influence the level of missing data per individual in a SNP dataset?

You could also try the option --missing-site in VCFTOOLS, which will generate a report
on a per site basis.
Let’s remove the sites with missing data. Use VCFTOOLS with the option --max-missing
which can take values from 0 to 1, where 1 means no missing data allowed.

$vcftools --vcf ./1chrf_pass.vcf --max-missing 1 --recode --out
final

Let’s rename the output as the name is too long:
$mv final.recode.vcf final.vcf

Let’s check the Ts/Tv ratio. This will be printed on screen.
$vcftools --vcf ./final.vcf --TsTv-summary

Q2: Discuss the following question:
Why is TsTv ratio important and how can we improve it in a SNP dataset?

Let’s look at the coverage of the data. To calculate the average coverage (depth) per
individual:

$vcftools --vcf ./final.vcf --depth --out final

$column -t -s $’\t’ final.idepth

We can calculate also the coverage per site:

6 https://doi.org/10.1093/bioinformatics/btr330
7 https://doi.org/10.1093/bioinformatics/btr509

https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr509

5

$vcftools --vcf ./final.vcf --site-mean-depth --out final

Let’s look at the min coverage per site:
$cut -f3 final.ldepth.mean | sort -n | uniq | head

Q3: Discuss the following question:
What is the minimum and what is the maximum coverage per individual? Can you explain
the coverage range between different individuals?

Q4: Discuss the following question:
What is the min and max coverage per locus? Can you find explanations of the coverage
range between different loci?

Let’s calculate a measure of heterozygosity on a per-indivdiual basis. An inbreeding
coefficient F will also be estimated for each accession. The output will have the suffix .het:

$vcftools --vcf ./final.vcf --het --out final

Q5: Discuss the following question:
How can we explain the difference in heterozygosity between individuals? Are there any
technical aspects that should be taken into account?

For the analyses we want to use today we will focus only on loci that have the minor allele
present in at least 2 individuals. We can filter the data to retain only those loci:

$vcftools --vcf ./final.vcf --maf 0.3 --recode --out finalF

Finally, we can check what is the Ts/Tv for the final dataset:
$vcftools --vcf ./finalF.recode.vcf --TsTv-summary --out finalF

PART III: CONVERT FILE TO PHYLIP FORMAT.
We will convert the vcf file to a phylip format using VCF2PHYLIP8:

$../programs/vcf2phylip.py -i finalF.recode.vcf -m 2 -r --output-
prefix final

PART IV: BUILD A PHYLOGENETIC TREE WITH RAXML9.
RAxML is a standard tool for Maximum-likelihood based phylogenetic inference, particularly
useful when dealing with data formed as concatenated SNPs. RAxML may complain that at
least 2 sequences are identical in the file, but chose not to exclude them from the analysis.
We will run ML plus rapid bootstrapping of 100 replicates, by taking a GTRGAMMA model (a
general time reversible model including rate heterogeneity). This is just a quick way of getting
a phylogenetic tree, but additional considerations should be observed if a solid phylogenetic
tree needs to be produced.

$nice -n 19 raxmlHPC-PTHREADS-AVX -T 8 -f a -m GTRGAMMA -p 12345 -x
12345 -# 100 -s ./final.min2.phy -n tree

When the RAxML inference finishes, we visualize the tree at https://itol.embl.de/upload.cgi.
Use cat to print in the terminal the output RAxML_bipartitions.tree on screen, copy it and paste
it in the field “Tree text” of the itol website. Upload.
Reroot the tree with Tmima by clicking on the respective branch with the left mouse button,
and selecting “Tree structure/Re-root the tree here”. Change Label options in the Menu on the

8 https://doi.org/10.5281/zenodo.2540861
9 https://doi.org/10.1093/bioinformatics/btu033

https://itol.embl.de/upload.cgi
https://doi.org/10.5281/zenodo.2540861
https://doi.org/10.1093/bioinformatics/btu033

6

right hand to Position “At tips”. To show bootstrap supports, go in the Menu on the right hand
side to the Advanced tab, and select for Bootstrap/metadata “Display”, as text.

